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Furthermore, the neurobiological underpinnings of the different 
symptoms may not overlap (Lanius et al., 2006), suggesting that 
different “subtypes” of PTSD may have different treatment targets. 
Finally, PTSD is frequently co-morbid with other disorders, such as 
depression, substance abuse, and other anxiety disorders (Kessler 
et al., 1995). Taken together, these issues result in a complex phe-
notype of PTSD; one that is difficult to model in animal research 
and does not easily lend itself to treatment outcome studies.

Given this complexity, progress in the field can be greatly 
enhanced by focusing on phenotypes that are more proximal to the 
neurobiology of the disorder. Such neurobiological intermediate 
phenotypes can provide investigative tools to increase our under-
standing of the roots of the disorder and develop better prevention 
or intervention programs. Although the narrow focus cannot by 
definition encompass the entire spectrum of the illness, it can define 
targets in the neurocircuitry of the illness.

In the present paper, we argue that the inhibition of fear 
responses is an intermediate phenotype that is related to both the 
neurocircuitry associated with the disorder, and is linked to its 
clinical symptoms. An advantage of focusing on fear inhibition is 
that the neurobiology of fear has been well investigated in animal 
models providing the necessary groundwork in understanding 
alterations. Furthermore, because many paradigms can be tested 
across species, fear inhibition is an ideal translational tool. For 
example, fear-potentiated startle and inhibition of fear-potentiated 
startle has been tested in rodents, non-human primates, as well as 
humans (Myers et al., 2009). Here we review both the behavioral 
tests and measures of fear inhibition and the related neurocircuitry 
in neuroimaging studies with both healthy and clinical samples.

Neurobiological iNtermediate pheNotypes of ptsd
Posttraumatic stress disorder (PTSD) can develop in some indi-
viduals who are exposed to an event that causes extreme fear, horror, 
or helplessness (APA, 1994). PTSD is considered the fourth most 
common psychiatric disorder, affecting 10% of all men and 18% 
of women (Breslau et al., 1998). The rates of lifetime PTSD are 
closer to 40% in high trauma populations, such as combat (Kessler 
et al., 1995) and low-income inner-city populations (Schwartz 
et al., 2005; Alim et al., 2006). Recent studies have demonstrated a 
steep dose–response curve between trauma frequency and PTSD 
symptom severity such that the more traumatic events a person 
experiences, the greater the PTSD symptoms (Binder et al., 2008; 
Mcteague et al., 2010). Even at such high prevalence rates, the rela-
tionship between trauma exposure and PTSD suggests resiliency in 
the majority of individuals, indicating the presence of “resilience 
factors” that allow trauma-related symptoms to diminish over time. 
These factors can be genetic, as shown by several recent gene by 
environment interaction studies (Binder et al., 2008; Ressler et al., 
2010), or psychological, such positive social support (Charney, 
2004; Norrholm and Ressler, 2009).

Delineating these resilience factors is of great importance to the 
development of improved and personalized treatment approaches 
to this disorder; however, using the DSM-IV defined disorder as the 
phenotype under investigation raises many complications. PTSD is 
a heterogeneous disorder, which presents with different symptom 
domains, specifically, re-experiencing, avoidance and numbing, 
and hyper-arousal symptoms. As some patients may present higher 
symptoms in one domain as compared to another, a one-size-fits-
all approach is often inadequate (Norrholm and Jovanovic, 2010). 
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iNhibitioN of fear as a Neurobiological pheNotype
Inhibition of fear responses involves learning and then appropri-
ately responding to safety signals, i.e., the ability to discriminate 
between danger and safety cues and suppress fear responses in the 
presence of safety cues (Jovanovic et al., 2011). In the laboratory, 
fear inhibition can be measured by first using a fear condition-
ing paradigm to acquire learned fear (termed fear acquisition), 
which is then followed by training to inhibit learned fear responses 
(termed fear inhibition). Fear conditioning is based on a simple 
Pavlovian conditioning model in which a neutral conditioned 
stimulus (termed the CS; for example, a light) is paired with an 
aversive unconditioned stimulus (termed the US; for example, cuta-
neous electric shock). After a number of pairings, the association 
is formed so that the CS alone elicits the conditioned response 
(termed the CR; for example, freezing in rodents or fear-potentiated 
startle in humans; Pavlov, 1927). This basic model is used in ani-
mal as well as human research to investigate mechanisms of fear 
expression (Davis, 1990; Labar et al., 1995; Grillon and Davis, 1997; 
Fanselow and Ledoux, 1999; Lissek et al., 2005; Jovanovic et al., 
2006). The advantage of using these paradigms is that they can be 
measured with peripheral outcomes such as the skin conductance 
or startle responses, which are non-invasive but offer physiological 
measures of fear conditioning. In this review we will describe fear 
inhibition as the reduction of fear responses in the presence of 
safety cues which is a manifestation of the underlying inhibitory 
neurocircuitry.

There are two laboratory models that have been primarily used 
for behavioral testing of fear inhibition in animals and humans: 
extinction and differential conditioning. Whereas fear acquisi-
tion refers to learning that something is dangerous, extinction is 
a mechanism by which an individual learns that something that 
was previously dangerous has become safe. In fear extinction 
paradigms, a stimulus that was previously paired with an aversive 
stimulus (the CS+) is then repeatedly presented without the US, 
so that it no longer elicits a fear response [cf. (Myers et al., 2006; 
Norrholm et al., 2006), see Figure 1A]. In a basic differential con-
ditioning paradigm, the above CS+ pairing is intermingled, at the 
time of training, with a separate stimulus (CS−). The CS− does not 
co-occur with an aversive stimulus, and thus represents safety, or 
inhibition of fear. This paradigm involves a simple discrimination 
between the danger and safety cues (see Figure 1B), and is the one 
most commonly used in human fear conditioning research (Lissek 
et al., 2005). More complex tasks, such as conditional discrimina-
tion, Figure 1C (in which there is an element of the conditioning 
stimulus that is shared between the CS+ and CS−), and stimulus 
generalization, Figure 1D (in which there is a perceptual gradient 
of stimuli between the CS+ and CS−), are designed to capture more 
subtle variation in fear-inhibition processes.

Conditioned inhibition involves a variation of discrimination in 
which the danger cue (i.e., CS+) is not reinforced when preceded by 
(or combined with) a second cue, usually termed X, so that CS+, CS/
X−). Although the X cue should be conditioned to designate safety, 
it is vulnerable to second-order conditioning effects and limited 
by configural processing (Myers and Davis, 2004). This paradigm 
has been used in several animal studies (Falls et al., 1997; Gewirtz 
et al., 1997), but rarely in human studies (Grillon and Ameli, 2001) 
due to the above issues. Conditional discrimination, a modification 

Figure 1 | Schematic depictions of four different fear-inhibition paradigms; 
(A) extinction, (B) Simple Discrimination, (C) Conditional Discrimination, 
and (D) Stimulus generalization. CS+ = Reinforced Conditioned Stimulus; 
CS− = Non-reinforced Conditioned Stimulus. In fear extinction paradigms (A), a 
stimulus that was paired with an aversive stimulus (the CS+) during the initial 
phase is then repeatedly presented without the US in the next phase of the 
experiment, so that it no longer elicits a fear response. In the simple 
discrimination paradigm (B), the CS+ is intermingled with a separate stimulus 
that is not paired with the US (CS−). In a conditional discrimination experiment 
(C), the US occurs depending on the presence of the CS+ when it is combined 
with a neutral (X) cue, which is also combined with the CS− to predict the 
absence of the US. In the next phase of the experiment, presentation of CS+ and 
CS− together, without the shared cue (X) results in a reduced fear response 
compared to the response to CS+. In a stimulus generalization experiment (D), 
after the initial conditioning, the second phase of the experiment presents 
iterations of CSs that differ from the CS+ in small increments. The number of 
degrees required for discrimination is an indication of cue overgeneralization.
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 testing the reduction of fear-potentiated startle on the transfer test. 
We used this paradigm in combat veterans (Jovanovic et al., 2009) 
and traumatized civilian population (Jovanovic et al., 2010b) and 
have found that individuals who met criteria for PTSD had higher 
potentiation of the startle response to the CS− than traumatized 
controls and did not transfer safety on the test trial (Figure 2C).

While some data with combat veterans suggest that impaired 
fear inhibition may be an acquired trait (Milad et al., 2008), that is 
associated with current symptom severity (Jovanovic et al., 2009), 
other studies have reported that heightened fear responses and 
decreased inhibition of fear may be predictors of the disorder. A 
prospective study of police academy cadets found that greater skin 
conductance responses to threatening stimuli and slower habitu-
ation prior to trauma exposure were predictive of PTSD symp-
tom severity after trauma exposure (Pole et al., 2009). A similar 
prospective study with firefighters found that reduced extinction 
of fear conditioned responses examined before the index trauma 
explained almost a third of the symptoms in later traumatized 

of the conditioned inhibition design, avoids some of these limita-
tions (Myers and Davis, 2004). In a conditional discrimination 
experiment, an aversive event occurs depending on the presence of 
the CS+ when it is combined with a neutral (X) cue (Wagner and 
Rescorla, 1972). This cue is also combined with the CS− to predict 
the absence of the US (Figure 1C). In a critical subsequent test trial, 
presentation of CS+ and CS− together, without the shared cue (X) 
results in a reduced fear response compared to the response to CS+. 
This is referred to as the transfer test, when the inhibitory properties 
of the CS− are actively transferred to the combined CS+/CS− cue 
(Myers and Davis, 2004; Jovanovic et al., 2005).

The current review will focus on extinction, simple discrimina-
tion, and conditional discrimination methods of fear inhibition, 
as these have been more thoroughly investigated using psycho-
physiological techniques. The final paradigm, stimulus generaliza-
tion is a very novel approach to studying fear inhibition and has 
only been recently used in patients with panic disorder (Lissek 
et al., 2010), and there are no published studies to date that have 
tested stimulus generalization in PTSD. This paradigm is promis-
ing because it assesses both the subjects’ ability to detect subtle 
differences between danger and safety on a continuum, and their 
ability to show reduction of fear once the discrimination occurs 
(Lissek et al., 2010).

Both extinction tests and differential conditioning paradigms 
focus on active suppression of fear responses through learned safety 
signals; while fear itself may only involve subcortical areas of the 
brain located primarily in the limbic circuitry, safety signals may 
require a cognitive, cortical component (Bremner et al., 2005; Weike 
et al., 2008). This premise is supported by data from our lab show-
ing that awareness of the association between the CS and the US 
is necessary for inhibiting fear responses (Jovanovic et al., 2006). 
Furthermore, a recent study by Weike et al. (2008) examined the 
temporal domain of fear conditioning with a danger and safety sig-
nal and found that safety signal processing was slower than danger 
processing. The authors argued that top-down cognitive processes 
are involved in responses to safety signals which accounts for the 
latency in response.

We have recently used extinction, simple discrimination, and 
conditional discrimination paradigms in a highly traumatized 
civilian population from inner-city Atlanta (Jovanovic et al., 
2010a,b; Norrholm et al., 2011). Data from our study on extinction 
(Norrholm et al., 2011) suggest that the early phase of extinction is 
predicted by the level of fear expression to the CS+ (i.e., the danger 
signal) at the end of acquisition. It is this fear expression during 
early extinction that is exaggerated in PTSD subjects compared 
to traumatized non-PTSD controls (see Figure 2A). On the other 
hand, a high degree of fear remaining during late extinction is 
related to impaired inhibition, as it is best predicted by responses 
to the CS− (i.e., safety signal) at the end of acquisition (Norrholm 
et al., 2011). Figure 2B shows simple discrimination between the 
CS+ and the CS− during late acquisition between PTSD subjects 
and controls. Although PTSD subjects are slower in developing the 
discrimination, by the final phase of conditioning both groups show 
higher levels of fear-potentiated startle to the CS+ than the CS−; 
however, PTSD subjects demonstrate higher levels of fear to both 
stimuli (Norrholm et al., 2011). The final paradigm, conditional 
discrimination, measures fear inhibition to the safety signal by 

Figure 2 | Fear-inhibition data from our studies on a traumatized civilian 
population. (A) Extinction, adapted from (Norrholm et al., 2011); (B) Simple 
Discrimination, adapted from (Norrholm et al., 2011); (C) Conditional 
Discrimination, adapted from (Jovanovic et al., 2010b). EXT, Extinction Block; 
PTSD, Posttraumatic stress disorder; CS+, Reinforced Conditioned Stimulus; 
CS−, Non-reinforced Conditioned Stimulus.
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Neuroimaging studies in humans have used several paradigms 
that activate the PFC; the simplest and most commonly used 
tasks involve response inhibition. In such tasks, the participant 
is presented a stimulus indicating that a response is required, for 
example, to press a button when a letter appears on the moni-
tor. This is referred to as a “Go” signal. On a minority of trials, 
however, the participant is required to either withhold a response 
during a “NoGo” signal (the Go/NoGo task) or stop responding 
once they have begun the execute the action during a “Stop” 
signal (the Stop task; Hester et al., 2004; Eagle et al., 2008). The 
Go/NoGo task has been used in subjects with PTSD with elec-
troencephalogram (EEG) evoked-potentials (Wu et al., 2010) 
and functional magnetic resonance imaging (fMRI) measures 
(Carrion et al., 2008; Falconer et al., 2008). This task reliably 
indicates decreased activation in PTSD subjects compared to 
controls in the rostral ACC, located at the genu of the corpus 
callosum (see Figure 3B). The advantage of this task is that it is 
very simple to administer in both behavioral and neuroimaging 
studies, and may provide insight into deficits in inhibiting lim-
bic activity. Although a more general impairment in inhibitory 
processes mediated by the rACC may very well be an underly-
ing abnormality associated with several psychiatric disorders, 
the deficits in inhibiting fear responses appear to be uniquely 
associated with re-experiencing and hyper-arousal symptoms of 
PTSD (Norrholm and Jovanovic, 2010). Further support for the 
utility of this paradigm comes from a study predicting positive 
treatment outcomes in PTSD patients with greater rACC volumes 
(Bryant et al., 2008).

A well known and frequently used example of a more complex 
inhibition task is the Stroop effect task, where the meaning of a 
word (such as the word “red”) is in conflict with the color in which 
it is shown (for example, in blue ink). In this task, the subject is 
instructed to state the color of the ink while ignoring the interfer-
ence from the word. Due to the conflict between the color and the 
word, reaction times are delayed, providing a measure of the cogni-
tive inhibition (Stroop, 1935), and activating the ACC (Pardo et al., 
1990; Bremner et al., 2004). The Stroop task can also be adapted 
to use with emotion-relevant stimuli, in which the emotional con-
tent of a word competes with the cognitive content and must be 
ignored. This task also activates the ACC, but in an area distinct 
from the strictly cognitive interference tasks (Whalen et al., 1998, 
2006). Emotionally relevant stimuli appear to be processed by the 
rostral or subgenual area of the ACC (Shin et al., 2005), which is 
anterior to the genu of the corpus callosum. Furthermore, this 
specific region of the PFC, the rostral ACC, is involved in amygdala 
regulation (Etkin et al., 2006).

Neuroimaging studies using fear conditioning paradigms dem-
onstrate that fear acquisition and extinction of fear also activate 
the PFC, specifically the ventromedial (vmPFC; Phelps et al., 2004; 
Reinhardt et al., 2010). Recent developments in the spatial resolu-
tion of neuroimaging techniques have resulted in more fine-tuned 
examinations of this area of the brain. As mentioned above, the 
rostral or subgenual regions of the ACC are activated during the 
presentation of emotional stimuli; these areas are also activated 
during the regulation of fear (Phelps et al., 2004; Schiller et al., 
2008). There are several lines of evidence that this region of the 
vmPFC is associated with inhibition of fear. For example, fMRI data 

individuals (Guthrie and Bryant, 2006). On the other hand, a 
recent study of Vietnam veterans and their twins found that PTSD 
subjects did not have impaired extinction learning, but rather had 
less extinction retention on the day after acquisition and extinc-
tion compared to veterans without PTSD (Milad et al., 2008). 
Furthermore, impaired retention of extinction appeared to be an 
acquired trait related to the disorder since the twins of the PTSD 
subjects did not show the same impairment. It is possible that a 
decreased ability to inhibit fear is a risk factor for developing the 
disorder and contributes to the maintenance of the disorder, while 
decreased extinction retention is a state resulting from the disor-
der – given that these fear-inhibition phenotypes may have dif-
ferent neural underpinnings this would explain the above studies. 
Extinction learning requires inhibition of the fear circuitry by the 
prefrontal cortex (PFC; Phelps et al., 2004); whereas discrimination 
between danger and safety cues, and recall of extinction may also 
require activation of the hippocampus (Milad et al., 2007b). Given 
that both extinction and differential conditioning are dependent 
on the PFC, this review will focus on this region as a primary locus 
in fear-inhibition neurocircuitry.

iNhibitioN Neurocircuitry as a target of 
iNvestigatioN
The PFC has long been thought to play a role in behavioral inhibi-
tion. More than a decade ago, animal studies reported that lesions of 
the medial PFC (mPFC) prior to original fear conditioning retard 
extinction to a tone (Morgan et al., 1993). Recent studies have 
demonstrated that neurons in the PFC may have inhibitory action 
on the amygdala (Grace and Rosenkranz, 2002; Phelps et al., 2004). 
The PFC can be subdivided into medial and orbitofrontal PFC. 
The anterior cingulate cortex (ACC), which is also part of the PFC, 
has both rostral and dorsal components which may play different 
roles in the expression and inhibition of fear, as will be discussed 
in greater detail below. Figure 3 shows the medial regions of the 
PFC most involved in inhibitory processes (Figure 3A), including 
the ventral and dorsal PFC and the ACC (Figure 3B).

Figure 3 | Structural magnetic resonance image (Mri) showing areas 
involved in inhibition. (A) Coronal view showing location of medial areas in 
red. (B) Sagittal view showing prefrontal cortical areas.
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To summarize the neuroimaging findings to date, the rostral 
ACC is involved in (1) response inhibition tasks, (2) emotion regu-
lation tasks, (3) inhibition of fear, and (4) is hypo-active in PTSD. 
These data suggest that this specific circuit represents a compelling 
target for translational investigations of PTSD and anxiety, as a 
biomarker predictive of PTSD and anxiety disorder vulnerability, 
treatment response, or as a treatment outcome measure in itself.

iNhibitioN Neurocircuitry aNd implicatioNs for 
treatmeNt respoNse
Currently, the most effective therapy for PTSD appears to be psy-
chotherapy, such as cognitive-behavioral therapy, which employs 
imaginal, in vivo, or virtual reality exposure to trauma cues 
(Rothbaum and Schwartz, 2002). The repeated exposure to feared 
cues without the negative events associated with the trauma, gradu-
ally leads to a reduction in symptoms. Clearly, active fear inhibi-
tion is critically involved in this treatment type. Although extant 
treatment approaches are not tailored to an individual patient’s 
symptom profile, future treatment strategies for PTSD may be gov-
erned by a shift toward personalized medicine (see Norrholm and 
Jovanovic, 2010). The identification of particular risk factors such 
as genotype or gene expression, as well as the assessment of inter-
mediate phenotypes specific to PTSD may dictate which treatment 
regimens will be most effective for a particular patient.

It now appears that some forms of dysregulated fear inhibition, 
such as impaired conditioned fear extinction, may be a vulnerability 
factor for the development of PTSD (Guthrie and Bryant, 2006; 
Pole et al., 2009), while other forms of impaired inhibition, such as 
danger/safety signal discrimination, may be associated with current 
symptom state, (Jovanovic et al., 2009). In addition, impaired fear 
inhibition that manifests itself as disrupted extinction recall may 
represent acquired traits of the disorder (Milad et al., 2008). The dif-
ference between these paradigms may lie in the involvement of the 
hippocampus in the latter (Milad et al., 2007c); which early studies 
have found to be decreased in PTSD subjects (Bremner et al., 1995) 
possibly as a result of the trauma and associated stress (Bremner, 
2001). However, some have argued that smaller hippocampal vol-
ume is a risk factor for PTSD (Pitman, 2001; Gilbertson et al., 2002). 
These issues can only be resolved with a prospective study examin-
ing neural volume before and after onset of PTSD. Regardless of 
whether fear inhibition is impaired prior to PTSD or develops as 
part of the disorder itself, it may be modifiable with treatment.

Clinically, fear inhibition has not yet been tested with regard 
to treatment response. The lack of these studies is partly due to 
the difficulty of testing de novo learning in a repeated design. For 
example, improvements in fear inhibition after treatment may not 
be due to treatment efficacy, but rather to a practice effect from 
patients remembering the previously administered training para-
digms. A recent study with fear acquisition and fear extinction tests 
spaced 12 weeks apart demonstrated good test–retest reliability on 
these measures (Zeidan et al., 2011); this is a crucial first step to 
developing treatment outcome measures.

Although treatment outcome and psychophysiological fear-
inhibition measures have not been actively examined concur-
rently, several studies have begun to investigate the relationship 
between pre-treatment neural function and subsequent treatment 
response. In PTSD, one study revealed that larger rostral ACC 

indicate increased activation during an extinction recall task that is 
presented after extinction learning has occurred (Phelps et al., 2004; 
Milad et al., 2007b). vmPFC is also activated during fear reversal 
tasks in which the CS contingencies are switched after acquisition 
so that a previously conditioned danger cue (CS+) becomes the new 
safety cue (CS−; Schiller et al., 2008). Morphometric data show that 
the thickness of vmPFC cortical tissue is correlated with extinc-
tion retention (Milad et al., 2005; Hartley et al., 2011). Functional 
and morphometric data support the rostral ACC as an anatomical 
substrate for fear inhibition, however, similarly acquired functional 
and morphometric data suggest that dorsal ACC activity underlies 
fear acquisition and fear expression (Milad et al., 2007a). Given that 
this area is also implicated in cognitive tasks (Shin et al., 2007), 
it may be activated by the active learning that occurs during fear 
acquisition, rather than by the fear itself. However, given that this 
area has been associated with fear as well as other noxious stimuli 
such as pain (Vogt et al., 2003), it may be more centrally involved 
in the expression of negative affect and not simply activated by 
general learning.

Several studies have indicated that this inhibitory neurocircuit 
is dysregulated in PTSD patients. Evidence suggests that a hall-
mark of PTSD neurobiology is exaggerated amygdala activity dur-
ing fearful stimulation coupled with reduced top-down control of 
the amygdala by the PFC (Liberzon et al., 1999; Rauch et al., 2000, 
2006; Shin et al., 2004; Liberzon and Martis, 2006). Furthermore, 
functional neuroimaging studies that have examined connectiv-
ity between PFC and the amygdala have demonstrated impaired 
inhibition of the amygdala in PTSD (Lanius et al., 2004). The 
emergence of MRIs with greater special resolution allows for 
more precise descriptions of these neural substrates. A recent 
meta-analyses of imaging studies during emotion processing in 
PTSD, social anxiety, and specific phobia indicated that the ros-
tral ACC is less active in PTSD patients relative to controls; an 
effect not found in other anxiety disorders (Etkin and Wager, 
2007). Furthermore, deficient activation of the rostral ACC has 
been observed in women with sexual trauma-related PTSD by 
coupling the the Emotional Stroop task with neuroimaging tech-
niques (Bremner et al., 2004). Similar effects were also observed in 
combat veterans (Shin et al., 2001). Decreased activation of this 
area may be a risk factor for psychopathology: a recent study of 
children with depressed parents revealed a lack of ACC activa-
tion to the Emotional Stroop (Mannie et al., 2008). There has 
been a paucity of studies investigating fear conditioning in PTSD 
patients using neuroimaging methodologies. One study using 
positron emission tomography (PET) during fear acquisition and 
extinction, demonstrated heightened amygdala activity in PTSD 
patients relative to controls during the acquisition phase with 
lower ACC function during the extinction phase (Bremner et al., 
2005). The differential involvement of the ACC subcomponents 
has been further elaborated in more recent studies. For example, 
a recently published study that tested extinction recall in an fMRI 
task demonstrated increased activation of the dorsal ACC (associ-
ated with learning) and decreased activation of the vmPFC (which 
includes the rostral ACC) in PTSD patients (Rougemont-Bücking 
et al., 2011). Finally, as previously mentioned, the rostral ACC is 
hypo-activated during Go/NoGo inhibition tasks (Carrion et al., 
2008; Falconer et al., 2008).
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