
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/279839737

Role	of	the	Endocannabinoid	System	in
Depression:	from	Preclinical	to	Clinical
Evidence

Chapter	·	January	2014

DOI:	10.1007/978-1-4939-2294-9_5

CITATIONS

3

READS

297

8	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Intravitreal	injaction	of	amyloid-Beta	View	project

Depression/schizophrenia	and	addiction	comorbidity	in	animal	models	View	project

Vincenzo	Micale

Masaryk	University

81	PUBLICATIONS			2,189	CITATIONS			

SEE	PROFILE

Jana	Ruda-Kucerova

Masaryk	University

90	PUBLICATIONS			208	CITATIONS			

SEE	PROFILE

Filippo	Drago

University	of	Catania

282	PUBLICATIONS			5,979	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Jana	Ruda-Kucerova	on	07	July	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/279839737_Role_of_the_Endocannabinoid_System_in_Depression_from_Preclinical_to_Clinical_Evidence?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/279839737_Role_of_the_Endocannabinoid_System_in_Depression_from_Preclinical_to_Clinical_Evidence?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Intravitreal-injaction-of-amyloid-Beta?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Depression-schizophrenia-and-addiction-comorbidity-in-animal-models?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincenzo_Micale?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincenzo_Micale?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Masaryk_University?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vincenzo_Micale?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jana_Ruda-Kucerova?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jana_Ruda-Kucerova?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Masaryk_University?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jana_Ruda-Kucerova?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filippo_Drago?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filippo_Drago?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Catania?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filippo_Drago?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jana_Ruda-Kucerova?enrichId=rgreq-074964397114b1b408a10799d666a4f1-XXX&enrichSource=Y292ZXJQYWdlOzI3OTgzOTczNztBUzoyNDg0OTIwNjkyMjQ0NDhAMTQzNjI1NjUzNDgzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


97

Chapter 5
Role of the Endocannabinoid System in 
Depression: from Preclinical to Clinical 
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Abstract  The endogenous cannabinoid system (ECS) works as pro-homeostatic 
and pleiotropic signaling system activated in a time- and tissue-specific way dur-
ing physiological conditions, which include cognitive, emotional and motivational 
processes. It is composed of two G protein-coupled receptors (the cannabinoid 
receptors types 1 and 2 [CB1 and CB2] for marijuana’s psychoactive ingredient 
Δ9-tetrahydrocannabinol [Δ9-THC]), their endogenous small lipid ligands (anan-
damide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabi-
noids), and the proteins for endocannabinoid biosynthesis and deactivation. Data 
from preclinical and clinical studies have reported that a hypofunction of the endo-
cannabinoid signaling could induce a depressive-like phenotype; consequently, 
enhancement of endocannabinoid signaling could be a novel therapeutic avenue 
for the treatment of depression. To this aim there have been proposed cannabinoid 
receptor agonists or synthetic molecules that inhibit endocannabinoid degradation. 
The latter ones do not induce the psychotropic side effects by direct CB1 receptor 
activation, but rather elicit antidepressant-like effects by enhancing the monoami-
nergic neurotransmission, promoting hippocampal neurogenesis and normalizing 
the hyperactivity of hypothalamic-pituitary-adrenal axis, similarly as the standard 
antidepressants. The dysfunction of elements belonging to the ECS and the possible 
therapeutic use of endocannabinoid deactivation inhibitors and phytocannabinoids 
in depression is discussed in this chapter.

Keywords  Endocannabinoid system · CB1 and CB2 receptors · TRPV1 channels · 
Animal models · Depression · Antidepressants · ∆9-THC · Cannabidiol
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Introduction

Current Pharmacological Approach for the Treatment of 
Depression

Depression is one of the most common mental illness with a lifetime prevalence 
of about 15–20 %, resulting in enormous personal suffering, as well as social and 
economic burden [1]. The major depressive disorder is characterized by episodes 
of depressed mood lasting for more than 2 weeks often associated with feelings of 
guilt, decreased interest in pleasurable activities and inability to experience plea-
sure (named anhedonia), low self-esteem and worthlessness, high anxiety, disturbed 
sleep patterns and appetite, impairment in memory and suicidal ideation [2].

The treatment of depression was revolutionized in the 1950s with the introduc-
tion of two classes of pharmacological agents to the clinical practice: the mono-
amine oxidase inhibitors “MAOIs” and the tricyclic antidepressants “TCAs”. The 
discovery was based on the serendipitous finding that enhancement of the synaptic 
levels of monoamines improves the symptoms of depression, leading to the mono-
amine hypothesis of depression [3]. Thus, the introduction of antidepressant drugs 
had a profound impact on the way depression was viewed: if chemicals can reverse 
most depressive symptomatologies, then depression itself may be caused by chemi-
cal abnormalities in the brain. However first generation antidepressants, due to their 
toxic and poorly tolerated profile, were largely replaced by the selective serotonin 
reuptake inhibitors (SSRIs), norepinephrine reuptake inhibitors and serotonin nor-
epinephrine reuptake inhibitors and by atypical antidepressants (i.e. nefazodone and 
mirtazapine), which are not more effective than MAOIs or TCAs but show an im-
proved safety profile [4].

Recently, some atypical antipsychotics such as olanzapine, quetiapine or aripip-
razole, used either as monotherapy or in combination with venlafaxine or sertra-
line, have also shown efficacy at ameliorating symptoms of bipolar disorder and 
treatment-resistant major depression and received approval from the FDA (US Food 
and Drug Administration) for these indications [5]. Since disruptions of circadian 
and sleep-wake cycles have been recognized as major contributor to mood distur-
bance, and agomelatine (a melatonergic agonist and a serotonin 5-HT2C receptor 
antagonist) was found to be very effective in ameliorating depressive symptoms 
with a good tolerability and safety profile, a new concept for the treatment of mood 
disorders has recently emerged [6].

However, the past decade has witnessed a driven focus on the rational discovery 
of highly selective drugs, acting at novel non monoamine based targets such as GA-
BAergic and glutamatergic neurotransmission, neuroendocrine system or neuropep-
tide signaling, which in turn could affect intracellular signal transduction pathways. 
Yet, except for the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine 
[7], none of these drugs has reached the market [8–11]. Thus, the dominant hypoth-
esis of depression is still based on the monoamine model, which comprises the pri-
mary target for current antidepressants. Although today’s treatments are generally 
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safe and effective, 30 % of depressed patients treated with the conventional antide-
pressants are pharmacoresistant. In addition, the medication has to be administered 
for weeks or months to see appreciable clinical benefit [12]. Therefore, there is still 
a great need to update the current level of knowledge with regard to the pathophysi-
ological mechanisms underlying depressive disorders in order to develop safer, 
more effective, and faster acting pharmacotherapies. The partial efficacy of current 
drugs raises the central question to be addressed in this chapter: Does the alteration 
of the endocannabinoid system (ECS) have a crucial role in the pathophysiology 
of depressive disorders and is the ECS consequently able to provide a promising 
therapeutic approach for their treatment?

The Endocannabinoid System (ECS)

The ECS is a neuromodulatory system, which plays a role in a variety of physiologi-
cal processes both in the central nervous system (CNS) and in the periphery, mediat-
ing the effects of the psychoactive constituent of Cannabis Δ9-tetrahydrocannabinol 
(∆9-THC) [13]. Multiple lines of evidence have shown that its dysregulation is 
associated with several pathological conditions such as pain and inflammation [14, 
15], obesity, metabolic [16, 17], gastrointestinal [18], hepatic [19], neurodegen-
erative [20–22] and psychiatric disorders [23–25]. However, the exact pathophysi-
ological mechanisms through which the ECS controls these functions are not fully 
elucidated yet. The ECS is comprised of: (1) the cannabinoid receptors type CB1 
and CB2 [26–28], (2) their endogenous ligands anandamide (N-arachidonoyl-etha-
nolamine, AEA) and 2-arachidonylglycerol (2-AG) [29, 30], (3) a specific and not 
yet identified cellular uptake mechanism [31, 32], and (4) the enzymes for endocan-
nabinoid biosynthesis, N‑acyl-phosphatidylethanolamine-selective phosphodiester-
ase or glycerophosphodiesterase E1 and diacylglycerol lipase α or β [33, 34], or 
their inactivation, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase 
(MAGL) [35, 36], respectively for AEA and 2-AG. However, additional “players” 
which are described as potential members of the ECS include the TRPV1 channels, 
the putative CB1 receptor antagonist peptides like hemopressins, peroxisome pro-
liferator-activated receptor-α (PPAR-α) and γ (PPAR-γ) ligands, such as oleoyletha-
nolamide (OEA) or palmitoylethanolamide (PEA), and N-arachidonoyl-dopamine 
(NADA), which activates both TRPV1 and CB1 receptors. Although the existence 
of a third cannabinoid receptor subtype has also been suggested [37], to date only 
CB1 and CB2 receptors are recognized as G protein-coupled receptors for endocan-
nabinoids [38].

The cannabinoid CB1 and CB2 receptors are established as mediators of the bio-
logical effects induced by cannabinoids, either plant derived, synthetic, or endog-
enously produced. These receptors are encoded by two different genes on human 
chromosomes: 6q14-q15 (CNR1) and 1p36.11 (CNR2). They are 7 transmembrane 
Gi/o coupled receptors that share 44 % protein identity and display different phar-
macological profiles and patterns of expression, a dichotomy that provides a unique 
opportunity to develop pharmaceutical approaches.
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The CB1 receptors are ubiquitously expressed in the CNS where they are pre-
dominantly found at high densities in the basal ganglia, frontal cortex, hippocampus 
and cerebellum. They are present at a moderate/low densities in the periaqueduc-
tal gray, amygdala, nucleus accumbens, thalamus and medulla. However, the CB1 
receptors are also found in non-neuronal cells of the brain such as microglia, oli-
godendrocytes and astrocytes [39]. Within these cortical areas there are two major 
neuronal subpopulations expressing the CB1 receptors: the GABAergic interneu-
rons (with high CB1 receptor levels) and glutamatergic neurons (with relatively low 
CB1 receptor levels) [40], which represent the two major opposing players regulat-
ing the excitation state of the brain, GABAergic interneurons being inhibitory and 
glutamatergic neurons being excitatory. CB1 receptors are also located in neurons 
of the dorsal raphe nucleus (DRN) and in the locus coeruleus (LC) which are the 
major sources of serotonin (5-HT) and noradrenalin (NE) in the brain [41, 42]. 
Thus, the direct or indirect modulation of monoamine activity or of GABA and glu-
tamate neurons, respectively, could underlie the psychotropic and non-psychotropic 
effects of CB1 receptor activation.

The cannabinoid CB2 receptors, which are also activated by AEA and 2-AG, 
are mainly distributed in immune tissues and inflammatory cells, although they 
are also detected in glial cells, and to a much lesser extent, in neurons of several 
brain regions such as cerebral cortex, hippocampus, amygdala, hypothalamus and 
cerebellum [43, 44]. While their role in pain and inflammation has been extensively 
reported, recently their involvement in emotional processes has been suggested 
[45]. The observation that the elements belonging to the ECS are prevalent through-
out the neuroanatomical structures and circuits implicated in emotionality, includ-
ing prefrontal cortex (PFC), hippocampus, amygdala, hypothalamus and forebrain 
monoaminergic circuits, provides a rationale for the preclinical development of 
agents targeting this system to treat affective diseases.

Cannabis, Endocannabinoid System and Depression: Clinical and 
Preclinical Evidence

Cannabis sativa is the most commonly used illicit “recreational” drug worldwide, 
its popularity being due to its capacity to increase sociability, to induce euphoria 
and to alter sensory perception. Although the association between Cannabis sativa 
and psychopathologic conditions has been known for thousands of years, only in the 
last 50 years the identification of the chemical structure of marijuana components, 
the cloning of specific cannabinoid receptors and the discovery of the ECS in the 
brain have triggered an exponential growth of studies to explore its real effects on 
mental health [46].

The Cannabis plant contains over 100 terpenophenolic pharmacologically active 
compounds, known as cannabinoids. Of these, ∆9-THC, characterized in 1964 by 
Mechoulam’s team [47], was identified as the primary psychoactive component of 
Cannabis, and later shown to act as a direct agonist of CB1 and CB2 receptors. Oth-
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er cannabinoids include cannabichromene, cannabigerol and cannabidiol (CBD), 
which do not seem to induce the psychotropic side effects of ∆9-THC. They act on 
several levels in the CNS, including modulation of endocannabinoid tone [48–50], 
interaction with transient receptor potential vanilloid 1 (TRPV1) channels [48] and 
serotonin 5-HT1A receptors [51], and enhancement of adenosine signaling [52, 53]. 
The above mentioned mechanisms could underlie the positive effects induced by 
CBD treatment in preclinical studies of several psychiatric as well as other disor-
ders [54, 55].

Although elevation of mood is one of the commonly cited motivations for the 
use of Cannabis, in addition to its recreational actions, data from clinical trials in the 
1970’s failed to show any antidepressant effects of ∆9-THC [56, 57]. Additionally, 
the hypothesis that depressed individuals use Cannabis as a mean of self-medication 
proposed by preclinical studies [58] has not been fully supported by clinical data 
yet [59, 60]. By contrast, some data support the hypothesis that Cannabis use pre-
cipitates depression [61–65], where genetic and environmental factors could play a 
pivotal role [66–68]. However, a recent study has shown that depressive symptoms 
are indirectly related to Cannabis use through positive, but not negative, expectan-
cies [69]. It is not to be excluded that other factors such as the dose, route of admin-
istration, baseline emotional states, personality, environment and the setting, during 
which the drug is used, could be involved in ∆9-THC effects on mood.

Despite preclinical data supporting an altered endocannabinoid signaling as a 
molecular underpinning of several psychiatric disorders [70], to date only few di-
rect investigations have assessed endocannabinoid activity in depressed patients, 
as reviewed in Table 5.1. A significant increase of CB1 receptor density has been 
found in the dorsolateral prefrontal cortex (dlPFC) of depressed suicide victims, 
possibly suggesting a hyperfunctionality of the ECS in this population [71]. By 
contrast, a down-regulation of the ECS activity was suggested by Koethe et al. [72] 
and Hill et al. [73, 74], showing a decreased CB1 receptor density in grey matter 
glial cells and lower serum concentration of 2-AG in patients with major depres-
sion. However, an increase of endocannabinoid tissue content in the dlPFC of alco-
holic depressed patients as well as a significantly enhanced serum level of AEA in 
patients suffering of minor depression were also reported [73, 75]. Furthermore, in 
two recent clinical studies, a positive correlation was found among high blood pres-
sure and serum contents of endocannabinoids in depressed females [76] and among 
intense physical exercise, AEA and brain-derived neurotrophic factor (BDNF) lev-
els [77], suggesting that an interrelationship among endocannabinoids, depression 
and cardiovascular risk factors in women and an increase in peripheral BDNF levels 
could be a mechanism by which AEA intervenes in the neuroplastic and antidepres-
sant effects of exercise.

Thus, considering the recent preclinical evidence relating the effects of enhanced 
endocannabinoid signaling to the promotion of neurogenesis, it is not to exclude 
that its activation exerts antidepressant properties through mechanisms that re-
semble the ones triggered by conventional antidepressants on synaptic plasticity 
[78, 79]. However, the increasing interest concerning ECS dysfunction in depres-
sive disorders was engendered after the clinical use of the CB1 receptor antagonist 
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rimonabant for the treatment of obesity was interrupted. In line with the theory that 
a deficiency in CB1 receptor signaling could be involved in depression, rimonabant 
was withdrawn from the market because of undesirable psychiatric side effects such 
as anxiety, depression and suicidal ideations [80]. Although no controlled clinical 
trials concerning endocannabinoid signaling in depression are available, opposite 
changes in endocannabinoid activity could underlie the different forms of depres-
sive illness.

As recently suggested, genetic variations in CB1 receptor function could also 
facilitate the development of mood disorders in humans [81]. The human CB1 re-
ceptor gene (CNR1), which is located on the chromosome 6q14–15, seems to play a 
role in a broad spectrum of psychiatric disorders such as substance abuse disorders, 
schizophrenia and autism spectrum conditions [82–84]. With regard to depression, 
while Barrero et al. [85] showed a significant association between polymorphisms 
in CNR1 and depression only in Parkinson’s disease patients, recent studies support 
that genetic variations in CB1 receptor function and in FAAH could influence both 

Table 5.1   Schematic representation of the changes of the endocannabinoid system (ECS) elements 
in clinical studies of depression
ECS elements Sex (number 

of cases)
Diagnosis Tissue samplea Molecular 

readout
References

CB1 ♂♀ ( n = 10) Major depression dlPFC ↑ density [71]
♂♀ ( n = 11) Alcohol 

dependence
dlPFC/occipi-
tal cortex

↑ density 
(dlPFC)

[75]

♂♀ ( n = 15) Major depression Anterior-cin-
gulate cortex

↓ density [72]

AEA ♂♀ ( n = 11) Alcohol 
dependence

dlPFC ↑ level [75]

♀ ( n = 16) Major depression Serum No effect [73]
♀ ( n = 12) Minor depression Serum ↑ level [73]
♀ ( n = 15) Major depression Serum ↓ level [74]
♀ ( n = 28) Major/Minor 

depression
Serum ↑ level [76]

2-AG ♂♀ ( n = 11) Alcohol 
dependence

dlPFC ↑ level [75]

♀ ( n = 16) Major depression Serum ↓ level [73]
♀ ( n = 12) Minor depression Serum No effect [73]
♀ ( n = 15) Major depression Serum ↓ level [74]
♀ ( n = 28) Major/Minor 

depression
Serum ↑ level [76]

Palmitoyle-
thanolamide 
(PEA)

♀ ( n = 15) Major depression Serum No effect [74]

Oleoylethanol-
amide (OEA)

♀ ( n = 15) Major depression Serum No effect [74]

a dlPFC dorsolateral prefrontal cortex
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the development of depressive symptoms and the antidepressant treatment response 
[86–88]. However, a significant genetic interaction among the polymorphism in the 
serotonin transporter gene 5-HTTLPR, variants in the CNR1 gene, anxiety or stress 
adaptation have also been found [89, 90]. Thus, the identification of individuals 
with a high-risk of psychiatric disorders through genetic testing could be a promis-
ing strategy for the development of safer drugs [91].

The putative role of the ECS in depression is supported by evidence showing 
that the majority of available antidepressants also modify CB1 receptor expression 
and endocannabinoid content in brain regions related to mood disorders (Table 5.2). 
While fluoxetine increased CB1 receptor binding and/or signaling in the limbic 
region [92, 93], citalopram reduced CB1 receptor signaling in the hippocampus 
and hypothalamic paraventricular nucleus [94], suggesting a region-specific effect 
of SSRI on CB1 receptor-mediated signaling. Similarly, TCAs elicited different ef-
fects based on various brain regions: desipramine increased hippocampal and hypo-
thalamic CB1 receptor binding [95], while imipramine reduced it within the hypo-
thalamus, midbrain and ventral striatum and increased it within the amygdala [96]. 
However, no difference has been found in the AEA content. The MAOI tranylcy-
promine enhanced CB1 receptor binding and 2-AG level in PFC and hippocampus, 
while reducing AEA content within the PFC, hippocampus and hypothalamus [92]. 
Despite the conflicting panorama, these findings suggest that the antidepressants 
modify the endocannabinoid tone in different ways, depending both on the class of 
drugs and on the different brain regions considered.

Changes in ECS elements have also been reported in several stress related ani-
mal models (Table 5.3), in accordance with the clinical data described above. In 

Table 5.2   Schematic representation of the antidepressants effects on the endocannabinoid system 
(ECS) elements
Drug class Effective 

medication
Brain regiona Molecular readout References

Tricyclic anti-
depressants

Desipramine Hippocampus, 
Hypothalamus

↑ CB1 receptor binding [95]

Imipramine Hypothalamus, 
Hippocampus, 
Midbrain, 
vStriatum, 
Amygdala

↓ CB1 receptor binding 
(Hypothalamus, Midbrain, 
vStriatum)
↑ CB1 receptor binding 
(Amygdala)

[96]

MAO (A-B) 
inhibitors

Tranylcypromine PFC, Hip-
pocampus, 
Hypothalamus

↑ CB1 receptor binding
↑ 2-AG content (PFC)
↓ AEA content

[92]

Selective 
serotonin 
reuptake 
inhibitors 
(SSRI)

Fluoxetine PFC ↑ CB1 receptor binding [92, 93]
Citalopram Hippocampus, 

Hypothalamic 
paraventricular 
nucleus

↓ CB1 receptor binding [94]

a PFC prefrontal cortex, vStriatum ventral striatum
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well validated animal models of depression such as the chronic mild stress (CMS) 
paradigm or the bilateral olfactory bulbectomy (OBX) model, which produce be-
havioural and neurochemical changes similar to those in human depression, a sig-
nificant increase of CB1 receptor density and binding has been found in the PFC 
[96–100], together with a significant decrease in the ventral striatum, hypothalamus 
[96], midbrain [97] and hippocampus [99, 101–103]. This latter seems to be asso-
ciated with a significant alteration of the hippocampal endocannabinoid-mediated 
neurotransmission and synaptic plasticity [104]. Collectively, the effects of experi-
mental stress procedures on brain CB1 receptor expression seem to be region de-
pendent.

Although the presence of CB2 receptors in stress responsive brain regions sug-
gests their involvement in the regulation of mood, to date there is no evidence con-
cerning their modification in the brain of depressed patients. More data come from 
preclinical studies, which reported a reduction of CB2 receptors in the hippocam-
pus, striatum and midbrain in animal models of depression. Similarly, an increase of 
CB2 receptor expression counteracts behavioural and neurochemical features relat-
ed to a depressive-like state [105–107]. Other controversial data about the endocan-
nabinoid brain content in depression have also been recorded. While Bortolato et al. 
[97] did not find a change in AEA levels in different brain regions of rats subjected 
to CMS, others reported a significant reduction of AEA content following different 
chronic stress paradigms [96, 108–111]. The effects of stress procedure on 2-AG 
levels are confusing as well, since a reduction in the hippocampus and an increase 
in thalamus, hypothalamus and amygdala has been shown [96, 97, 101, 109, 112], 
or no such effects [97, 110]. Although the discrepancy may be due to numerous fac-
tors, such as the nature and duration of the stress, the species (rats vs. mice) or strain 
(Wistar vs. Sprague-Dawley rats), differences in response to stress procedure, or the 
time and tissue of extraction, the data described above supports the general hypoth-
esis that a deficiency in the functioning of the endocannabinoid signaling, both in 
depressed patients and in animal models of depression, may directly lead to a vul-
nerability in development of the illness. Thus, it seems reasonable to hypothesize 
that its pharmacological facilitation would produce certain antidepressant effects.

Current Status of Animal Models of Depression  
and Antidepressant Responsive Tests

Due to the limited efficacy of antidepressant treatments, a better understanding of 
the pathophysiology of mental health disorders and the development of novel, im-
proved therapeutic treatments would fill a considerable unmet medical need [113]. 
Due to the enormous cost of clinical trials, pharmaceutical companies make all ef-
forts at testing new chemicals designed to alter the function of a specific target of 
disease in a predictable and safe manner [114]. Thus, of central importance to this 
approach is the availability of valid preclinical animal models for the evaluation of 
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the potential efficacy of novel compounds and the further understanding of the neu-
ropathology that underlies the idiopathic disease state of depression [115].

Ideally, an experimental animal model should reflect the human psychiatric dis-
ease in terms of face validity (i.e. reproduce the symptoms of depression observed 
in humans), construct validity (the same neurochemical mechanisms in humans as 
in the animal model) and predictive validity (chronic antidepressant treatment must 
reverse the phenotype of the animal model) [116]. In the case of depression, an 
animal model which perfectly includes the etiology, the pathophysiology and the 
symptoms of depression whilst allowing evaluating the responses to treatments re-
mains impossible to fully envisage. However, different models, each with specific 
limitations, are able to reproduce most of the etiological factors and many symp-
toms of depression or possess a satisfactory predictive value for identifying new 
compounds. For this purpose, the forced swim test (FST) or the tail suspension 
test (TST) and the CMS or the OBX seem to be good experimental approaches for 
screening potential new antidepressants and shape the underlying disease etiology 
[117].

The most widely used paradigm to assess antidepressant-like behaviour is the 
FST also known as Porsolt’s test [118]. In the FST rodents are forced to swim in 
an inescapable cylinder filled with water and eventually adopt a characteristic im-
mobile posture which is interpreted as a passive stress-coping strategy or depres-
sive-like behaviour (behavioural despair). The FST has shown its ability to detect a 
broad spectrum of substances with antidepressant efficacy, as these drugs shift from 
passive stress-coping towards active coping, which is detected as reduced immobil-
ity. Furthermore, the quantity of different movements such as climbing and swim-
ming behaviour has predictive value to differentiate between NEergic and 5-HTer-
gic activity. Some of the most representative potential antidepressants with different 
mechanisms of action have been submitted to this test [23, 119].

Similar assumptions and interpretations as the FST is the TST [120]. In this test, 
mice are suspended by their tails for a defined period of time and their immobility 
is decreased by several antidepressants. A major drawback of the TST is that its 
application is restricted to mice and limited to strains which do not tend to climb 
their tail, a behaviour that would otherwise confuse the interpretations of the results 
[121]. The test however is sensitive to acute treatment only and its validity for non-
monoamine antidepressants is uncertain [119, 122].

A different model is the CMS paradigm, which is based on reduced sweet fluid 
intake as an index of anhedonia, induced by repeated (at least 2 weeks) exposure 
to unpredictable stressors (i.e. wet bedding, disruption of dark-light cycle and food 
or water deprivation) [123]. This model induces various long-term behavioural 
and neurochemical alterations resembling some of the dysfunctions observed in 
depressed patients, which are reversed only by chronic treatment with a broad spec-
trum of antidepressants. As compared to other experimental models of depression, 
it has been evaluated as a high perspective research approach, despite its procedural 
complexity and poor inter-laboratory reliability.

The OBX, a lesion model of depression is based on surgical removal of olfactory 
bulbs by aspiration [124] and results in a disruption of the limbic hypothalamic axis 
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followed by neurochemical (i.e. changes in all major neurotransmitter systems) and 
behavioural (e.g. hyperactive response in the open field paradigm and anhedonia) 
alterations, which resemble changes seen in depressed patients and are reversed 
only by chronic administration of antidepressants [125, 126]. In most of the models 
described above, locomotor activity in the open field test must be also monitored 
to ensure that motor depression rather than emotional behaviour is not influencing 
animal responses [126].

Although none of the available experimental paradigms are able to model all 
aspects of depression disorders in terms of etiological factors and symptoms, and 
most likely never will, the paradigms described above have proven extremely use-
ful both in the identification of potential new antidepressants and in the validation 
of neurobiological concepts. More specifically, they have been extensively used for 
assessing the potential antidepressant-like activity of compounds modulating the 
endocannabinoid signaling in rodents.

Effects of Pharmacological Manipulation of the 
Endocannabinoid Signaling in Preclinical Studies  
of Depression

After discovering the ECS members (CB1 and CB2 receptors, endocannabinoids 
AEA and 2-AG and enzymes for their degradation, FAAH and MAGL) several 
pharmacological tools, which vary from direct agonists or antagonists (Fig.  5.1) 
to endocannabinoid enhancers have been evaluated in several in vitro and in vivo 
studies to assess their therapeutic potential in stress-related neuropsychiatric disor-
ders [23] (Table 5.4). Based on the hypothesis that a reduction of endocannabinoid 
signaling could underlie depressive disorders, it has been seen that acute or repeated 
treatment with different compounds which activate directly cannabinoid receptors, 
such as the main pharmacologically active principle of Cannabis sativa ∆9-THC 
[98, 127–130], the endogenous cannabinoid AEA [131, 132], the synthetic nonspe-
cific CB1/CB2 receptor agonists CP55,940 [133], WIN55,212–2 [134, 135] and 
HU-210 [136–139] or the selective CB1 receptor agonist arachidonoyl 2’-chloro-
ethylamide (ACEA) [140, 141] elicited antidepressant-like effects through CB1 and 
5-HTergic or NEergic receptor-mediated mechanisms.

However, chronic exposure to Δ9-THC or WIN55,212–2 in adolescence led to a 
depressive-like phenotype in adulthood, further supporting the fact that adolescence 
is a critical period in which protracted direct CB1 receptor activation may influence 
mood control [142–146] (see also Chap. 12). Although the CB1 receptor antago-
nist rimonabant, which was introduced into clinical practice as antiobesity agent, 
was withdrawn from the market due to the higher incidence of psychiatric side 
effects [147], preclinical studies have reported an antidepressant-like activity of 
rimonabant in rodents [129, 130, 148–151]. Using a genetic approach controversial 
results regarding the effects of CB1 receptor signaling inhibition on stress coping 
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behaviour have been obtained indicating that they could depend on specific deletion 
of CB1 receptors in some neuronal subpopulations [129, 152, 153]. However, com-
pensatory mechanisms which develop in mutant mice could underlie the discrepan-
cies between pharmacological and genetic inhibition of CB1 receptor signaling.

Although CB2 receptor ligands might be potentially safer due to the lack of 
psychoactive effects, controversial evidence concerning the effects of CB2 recep-
tor signaling modulation on depressive-like behaviour has been recently described 
[23]. Thus, further clinical and preclinical investigations are required to define the 
role of CB2 receptors in the pathophysiology and treatment of depression. Despite 
the fact that vanilloid TRPV1 channels, due to their co-localization with CB1 recep-
tors in several brain regions [154], seem to represent “the other side of the coin” in 
the regulation of anxiety, a similar function in depression is still ambiguous, since 
both TRPV1 agonists [155, 156] and pharmacological [155–158] or genetic TRPV1 
blockade [159] elicited antidepressant-like effects. Thus, further studies are neces-
sary to assess the role of TRPV1 channels as additional ECS “players” in mood 
regulation. Based on the assumption that direct activation of CB1 receptors elicited 
psychotropic side effects, several compounds have been developed that reinforce 
the effects of AEA and 2-AG by inhibiting their degradative enzymes FAAH and 
MAGL, or by blocking their cellular reuptake. Since CB1 receptors, FAAH and 
MAGL are not equally distributed in the brain; the indirect stimulation of CB1 
receptors by endocannabinoid breakdown blockers could modulate the endocan-
nabinoid signaling in selected brain areas which control mood [160].

Fig. 5.1   Schematic illustration of the pharmacological modulation (i.e. agonists, antagonists and 
endocannabinoid enhancers) of the endocannabinoid system in preclinical studies of depression. 
For details about the different drugs see the main text and Table 5.4



1115  Role of the Endocannabinoid System in Depression

D
ru

gs
M

ec
ha

ni
sm

 o
f a

ct
io

n
Ex

pe
rim

en
ta

l 
m

od
el

a
A

ni
m

al
s

B
eh

av
io

ur
al

 re
sp

on
se

a
Po

si
tiv

e 
co

nt
ro

l
R

ef
er

en
ce

s

∆9
-T

H
C

N
on

 se
le

ct
iv

e 
C

B
1/

C
B

2 
re

ce
pt

or
 a

go
ni

st
O

B
X

Sp
ra

gu
e-

D
aw

le
y 

ra
ts

↓ 
lo

co
m

ot
or

 a
ct

iv
ity

Fl
uo

xe
tin

e
[9

8]
Li

st
er

 h
oo

de
d 

ra
ts

↓ 
lo

co
m

ot
or

 a
ct

iv
ity

N
D

[1
30

]
FS

T/
TS

T
Sw

is
s-

D
B

A
/2

 m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

Fl
uo

xe
tin

e,
 D

es
ip

ra
m

in
e

[1
27

]
Sp

ra
gu

e-
D

aw
le

y 
ra

ts
↓ 

im
m

ob
ili

ty
 ti

m
e

C
ita

lo
pr

am
[1

28
]

B
l6

N
 m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

29
]

A
EA

N
on

 se
le

ct
iv

e 
C

B
1/

C
B

2 
re

ce
pt

or
 a

go
ni

st
FS

T/
TS

T/
C

M
S

IC
R

 m
ic

e
N

o 
ef

fe
ct

 o
n 

im
m

o-
bi

lit
y 

tim
e/

↑ 
su

cr
os

e 
co

ns
um

pt
io

n

C
lo

m
ip

ra
m

in
e

[1
31

]

FS
T

Sw
is

s m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

Fl
uo

xe
tin

e
[1

32
]

C
P,

55
94

0
N

on
 se

le
ct

iv
e 

C
B

1/
C

B
2 

re
ce

pt
or

 a
go

ni
st

FS
T

W
is

ta
r r

at
s

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

33
]

W
IN

55
,2

12
–2

N
on

 se
le

ct
iv

e 
C

B
1/

C
B

2 
re

ce
pt

or
 a

go
ni

st
FS

T
Sp

ra
gu

e-
D

aw
le

y 
ra

ts
↓ 

im
m

ob
ili

ty
 ti

m
e

C
ita

lo
pr

am
, D

es
ip

ra
m

in
e

[1
34

]
C

M
S

Sp
ra

gu
e-

D
aw

le
y 

ra
ts

↓ 
im

m
ob

ili
ty

 ti
m

e/
↑ 

ex
tin

ct
io

n 
of

 a
vo

id
an

ce
 

be
ha

vi
ou

r/
N

o 
ef

fe
ct

 o
n 

su
cr

os
e 

co
ns

um
pt

io
n

N
D

[1
35

]

H
U

-2
10

N
on

 se
le

ct
iv

e 
C

B
1/

C
B

2 
re

ce
pt

or
 a

go
ni

st
FS

T
Lo

ng
-E

va
ns

 ra
ts

↓ 
im

m
ob

ili
ty

 ti
m

e
D

es
ip

ra
m

in
e

[1
36

]
N

D
[1

37
]

Sp
ra

gu
e-

D
aw

le
y 

ra
ts

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

38
]

D
es

ip
ra

m
in

e
[1

39
]

A
ra

ch
id

on
oy

l
2'

-c
hl

or
o-

et
hy

la
m

id
e 

(A
C

EA
)

Se
le

ct
iv

e 
C

B
1 

re
ce

pt
or

 
ag

on
is

t
FS

T
B

A
LB

/c
 m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
Fl

uo
xe

tin
e

[1
40

]
C

M
S

Sp
ra

gu
e-

D
aw

le
y 

ra
ts

↑ 
ex

tin
ct

io
n 

of
 a

ve
rs

iv
e 

m
em

or
ie

s
N

D
[1

41
]

Ta
bl

e 
5.

4   
Sc

he
m

at
ic

 re
pr

es
en

ta
tio

n 
of

 th
e 

ef
fe

ct
s o

f t
he

 p
ha

rm
ac

ol
og

ic
al

 m
od

ul
at

io
n 

of
 th

e 
en

do
ca

nn
ab

in
oi

d 
sy

st
em

 (E
C

S)
 in

 p
re

cl
in

ic
al

 st
ud

ie
s o

f d
ep

re
ss

io
n



112 V. Micale et al.

D
ru

gs
M

ec
ha

ni
sm

 o
f a

ct
io

n
Ex

pe
rim

en
ta

l 
m

od
el

a
A

ni
m

al
s

B
eh

av
io

ur
al

 re
sp

on
se

a
Po

si
tiv

e 
co

nt
ro

l
R

ef
er

en
ce

s

JW
H

01
5

Se
le

ct
iv

e 
C

B
2 

re
ce

pt
or

 
ag

on
is

t
C

M
S

B
A

LB
/c

 m
ic

e
↑ 

su
cr

os
e 

co
ns

um
pt

io
n

N
D

[1
05

]

G
W

40
58

33
Se

le
ct

iv
e 

C
B

2 
re

ce
pt

or
 

ag
on

is
t

FS
T

W
is

ta
r r

at
s

↓ 
im

m
ob

ili
ty

 ti
m

e
D

es
ip

ra
m

in
e

[2
24

]

O
lv

an
il

Se
le

ct
iv

e 
TR

PV
1 

ag
on

is
t

FS
T/

TS
T

IC
R

 m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

N
D

[1
56

]
C

ap
sa

ic
in

Se
le

ct
iv

e 
TR

PV
1 

ag
on

is
t

FS
T/

TS
T

IC
R

 m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

N
D

[1
56

]
Sw

is
s m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
Fl

uo
xe

tin
e

[1
55

]
A

rv
an

il
N

on
se

le
ct

iv
e 

TR
PV

1/
C

B
1 

re
ce

pt
or

 a
go

ni
st

FS
T/

TS
T

IC
R

 m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

N
D

[1
56

]

R
im

on
ab

an
t

(S
R

14
17

16
)

Se
le

ct
iv

e 
C

B
1 

re
ce

pt
or

 
an

ta
go

ni
st

/in
ve

rs
e 

ag
on

is
t

FS
T

Sw
is

s m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

N
D

[1
48

]
C

M
S/

FS
T

W
is

ta
r r

at
s/

B
A

LB
/c

 m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

Fl
uo

xe
tin

e
[1

49
]

FS
T

B
l6

 N
 m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

29
]

D
es

ip
ra

m
in

e
[1

50
]

IC
R

 m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

Im
ip

ra
m

in
e

[1
51

]
O

B
X

Li
st

er
 h

oo
de

d 
ra

ts
↓ 

lo
co

m
ot

or
 a

ct
iv

ity
N

D
[1

30
]

C
ap

sa
ze

pi
ne

se
le

ct
iv

e 
TR

PV
1 

an
ta

go
ni

st
FS

T/
TS

T
Sw

is
s m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
Fl

uo
xe

tin
e

[1
55

]

Re
sin

ife
ra

to
xi

n
se

le
ct

iv
e 

TR
PV

1 
an

ta
go

ni
st

FS
T

Sw
is

s m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e 

(2
6  °

C
)

↑ 
im

m
ob

ili
ty

 ti
m

e 
(4

1 °
C

)

A
m

itr
ip

ty
lin

e,
K

et
am

in
e

[1
57

]

SB
36

67
91

se
le

ct
iv

e 
TR

PV
1 

an
ta

go
ni

st
FS

T
W

is
ta

r r
at

s
↓ 

im
m

ob
ili

ty
 ti

m
e 

in
 

ST
R

 ra
ts

C
lo

m
ip

ra
m

in
e

[1
58

]

Ta
bl

e 
5.

4   
(c

on
tin

ue
d)



1135  Role of the Endocannabinoid System in Depression

D
ru

gs
M

ec
ha

ni
sm

 o
f a

ct
io

n
Ex

pe
rim

en
ta

l 
m

od
el

a
A

ni
m

al
s

B
eh

av
io

ur
al

 re
sp

on
se

a
Po

si
tiv

e 
co

nt
ro

l
R

ef
er

en
ce

s

U
R

B
59

7
FA

A
H

 in
hi

bi
to

r
FS

T
Lo

ng
-E

va
ns

 ra
ts

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

61
]

W
is

ta
r r

at
s

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

33
]

Sw
is

s m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

Fl
uo

xe
tin

e
[1

32
]

Sp
ra

gu
e-

D
aw

le
y 

ra
ts

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

62
]

TS
T

B
l6

J m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

D
es

ip
ra

m
in

e
[1

63
]

C
M

S
W

is
ta

r r
at

s
↑ 

su
cr

os
e 

co
ns

um
pt

io
n

Im
ip

ra
m

in
e

[9
7]

IC
R

 m
ic

e
↑ 

su
cr

os
e 

co
ns

um
pt

io
n

N
D

[1
64

]
O

le
am

id
e

FA
A

H
 in

hi
bi

to
r

FS
T

Lo
ng

-E
va

ns
 ra

ts
↓ 

im
m

ob
ili

ty
 ti

m
e

D
es

ip
ra

m
in

e
[1

36
]

A
lb

in
o 

m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

N
D

[1
66

]
A

A
-5

-H
T

FA
A

H
 in

hi
bi

to
r/T

R
PV

1 
an

ta
go

ni
st

FS
T

W
is

ta
r r

at
s

↓ 
im

m
ob

ili
ty

 ti
m

e 
in

 
ST

R
 ra

ts
C

lo
m

ip
ra

m
in

e
[1

58
]

A
M

40
4

A
EA

 u
pt

ak
e 

in
hi

bi
to

r
FS

T
Lo

ng
-E

va
ns

 ra
ts

↓ 
im

m
ob

ili
ty

 ti
m

e
D

es
ip

ra
m

in
e

[1
36

]
W

is
ta

r r
at

s
↓ 

im
m

ob
ili

ty
 ti

m
e

Im
ip

ra
m

in
e

[1
33

]
Sw

is
s m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

72
]

Sw
is

s m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

Fl
uo

xe
tin

e
[1

32
]

JZ
L1

84
M

A
G

L 
in

hi
bi

to
r

C
hr

on
ic

 u
np

re
-

di
ct

ab
le

 m
ild

 
st

re
ss

B
l6

J m
ic

e
↑ 

su
cr

os
e 

co
ns

um
pt

io
n

↓ 
im

m
ob

ili
ty

 ti
m

e
N

D
[1

76
]

C
an

na
bi

di
ol

C
B

1-
C

B
2 

re
ce

pt
or

 a
nt

ag
-

on
is

t/i
nv

er
se

 a
go

ni
st

,
5-

H
T1

 A
 re

ce
pt

or
 a

go
ni

st
,

TR
PV

1 
ag

on
is

t,
A

EA
 u

pt
ak

e 
in

hi
bi

to
r,

FA
A

H
 in

hi
bi

to
r

FS
T

Sw
is

s m
ic

e
↓ 

im
m

ob
ili

ty
 ti

m
e

Fl
uo

xe
tin

e,
 D

es
ip

ra
m

in
e

[1
27

]
Sw

is
s m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
Im

ip
ra

m
in

e
[1

80
]

C
an

na
bi

-
ch

ro
m

en
e

TR
PV

1 
ag

on
is

t,
A

EA
 u

pt
ak

e 
in

hi
bi

to
r

FS
T/

TS
T

Sw
is

s-
D

B
A

/2
 m

ic
e

↓ 
im

m
ob

ili
ty

 ti
m

e
Fl

uo
xe

tin
e,

 D
es

ip
ra

m
in

e
[1

27
]

a  C
M

S 
ch

ro
ni

c 
m

ild
 st

re
ss

, F
ST

 fo
rc

ed
 sw

im
 te

st
, N

D
 n

ot
 d

et
er

m
in

ed
, O

BX
 b

ila
te

ra
l o

lfa
ct

or
y 

bu
lb

ec
to

m
y,

 T
ST

 ta
il 

su
sp

en
si

on
 te

st
, S

TR
 st

re
ss

ed
 g

ro
up

Ta
bl

e 
5.

4   
(c

on
tin

ue
d)



114 V. Micale et al.

The FAAH inhibitor URB597 has shown CB1 receptor-mediated antidepressant-
like effects by enhancing AEA signaling in several experimental models such as 
FST [132, 133, 161, 162], TST [163], CMS paradigm [97, 164], adolescent Δ9-THC 
exposure [146] and tail-pinch test [165]. Another FAAH inhibitor, oleamide, elic-
ited antidepressant-like effects through a CB1 receptor-mediated mechanism [136, 
166]. In agreement with the pharmacological approach, transgenic mice lacking 
FAAH, which exhibit more than 10-fold higher levels of AEA as compared to wild-
type mice, have shown a less depressive-like phenotype [145].

A particularly innovative approach in the treatment of mood disorders could be 
the use of compounds with the capability to combine inhibition of AEA hydroly-
sis with antagonism of TRPV1 channels. One such dual FAAH/TRPV1 blocker is 
N-arachidonoyl-serotonin (AA-5-HT) [167, 168], which elicited anxiolytic- [169–
171] and antidepressant-like activity [158], suggesting the potential therapeutic use 
of dual FAAH/TRPV1 inhibitors in stress-related disorders. A different strategy to 
enhance AEA signaling at the receptor is to block its uptake into pre- and/or post-
synaptic terminals, thereby promoting the indirect activation of CB1 receptors. The 
prototypical endocannabinoid transport inhibitor AM404 has improved the behav-
ioural performance of rodents in the FST, through a CB1 receptor-mediated mecha-
nism [132, 133, 136, 172]. However, the exact mechanism of action of endocan-
nabinoid uptake inhibitors as well as the molecular identity of the transporter itself 
still remains to be characterized. Therefore, further biomolecular studies will have 
to be performed in this direction.

Collectively, this evidence supports the clinical potential of endocannabinoid 
level modulators as new therapeutic tools for the treatment of mood disorders. Re-
cent data have suggested that 2-AG could act in the brain modulating behavioural 
responses in stress-related conditions [173–175]. In this context the prototypical 
MAGL inhibitor JZL184, by inducing an 8-fold increase in 2-AG, but not AEA, 
brain content reversed the depressive-like behaviour via activation of both CB1 
receptor and mTor signaling [176]. However, contrary to FAAH blockade, a po-
tential drawback in the use of MAGL inhibitors could be the development of tetrad 
effects which are typical of CB1 receptor agonists [177] as well as of tolerance with 
chronic use [178, 179].

In conclusion, while endocannabinoids are rapidly metabolized in vivo, limiting 
the potential efficacy of their exogenous administration, the data described above 
supports more FAAH than MAGL as a potential therapeutic target for the identifica-
tion of new pharmacotherapies for affective disorders [160]. In addition to the phar-
macological modulation of the endocannabinoid signaling, a different approach to 
reduce the psychotropic side effects of Cannabis is the use of plant-derived canna-
binoids with very weak or no psychotropic effects such as CBD, cannabichromene, 
cannabigerol, cannabidivarin and ∆9-Tetrahydrocannabinol, some of which show 
potential as therapeutic agents in preclinical models of CNS disorders [55]. Special 
emphasis is given to CBD, which exerts several positive pharmacological effects 
in preclinical and clinical studies to the point of making it a highly attractive thera-
peutic entity in several diseases. We still do not know the exact mechanism(s) of 
action underlying the mood-elevating effect of CBD, as it may act not only through 



1155  Role of the Endocannabinoid System in Depression

the ECS, but also by directly or indirectly activating the metabotropic receptors for 
5-HT or adenosine or by targeting nuclear receptors of the PPAR family as well as 
modulating ion channels including TRPV1 [18]. Contrary to the extensive research 
done regarding the potential therapeutic effects of CBD in anxiety [23] or schizo-
phrenia [24], only few studies have examined its antidepressant-like effects. In the 
FST, which represents a standard preclinical test to assess the effects of potential 
antidepressants, cannabichromene and CBD decreased the immobility time, the lat-
ter acting through a 5-HT1 A receptor–mediated mechanism [127, 180]. However, 
further studies are necessary to establish the efficacy and safety profile of phytocan-
nabinoids for the treatment of stress-related disorders.

Endocannabinoid Signaling and Antidepressant-Like 
Effects: Potential Molecular Underpinning

As described above, based on the monoaminergic hypothesis of depression, the 
actual antidepressants act by enhancing the central 5-HTergic and/or NEergic neu-
rotransmission through the inhibition of the synaptic re-uptake or enzymatic deg-
radation, and the desensitization or sensitization of specific receptors [4]. Several 
lines of evidence suggest that modulation of endocannabinoid signaling could fa-
cilitate 5-HTergic neurotransmission through an enhancement of 5-HT neuronal ac-
tivity, an increased 5-HT efflux or modulation of 5-HT receptors (i.e. 5-HT1A and 
5-HT2A/C). Both direct and indirect activation of CB1 receptors (the latter acting 
through pharmacological or genetic inhibition of FAAH activity) increased firing 
activity of 5-HTergic neurons in the DRN [128, 134, 162, 181], and enhanced basal 
5-HT efflux in several brain regions such as nucleus accumbens, striatum, hippo-
campus and PFC [181–183]. However, chronic exposure to the CB1 receptor ago-
nist WIN55,212–2 during adolescence attenuated 5-HTergic activity and elicited a 
depressive-like phenotype in adulthood, further supporting the importance of ado-
lescence as a highly sensitive developmental window within which the disruptive 
effects of cannabinoid exposure increase the risk for developing psychiatric disor-
ders [145]. Interestingly, inhibition of CB1 receptor signaling induced a depressive-
like phenotype in mice, which was mediated by an impairment of 5-HTergic neural 
activity [152, 153, 184–186], strenghening the role of the endocannabinoid tone in 
emotional behaviour through the modulation of the 5-HTergic neurotransmission. 
As described for conventional antidepressants, which induce a desensitization of the 
5-HT2A/C autoreceptors and/or an enhancement of the tonic activity of 5-HT1A re-
ceptors [187], the antidepressant-like effects elicited by cannabinoids could be due 
to changes in the expression and function of these receptors [128, 188]. However, 
further 5-HT receptor subtypes (i.e. 5-HT3 or 5-HT4) could also be involved in the 
emotional responses induced by the endocannabinoid tone modulation [189–192].

A dysregulation of NEergic system seems to be implicated in the pathophysiol-
ogy of depression, as supported by the primary action of antidepressants to en-
hance central NEergic transmission. In this context, a strong interaction between 
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the endocannabinoid and NEergic systems could participate in the antidepressant 
effects of endocannabinoid signaling enhancement, based on the expression of CB1 
receptors in the LC (the major NEergic nucleus). More specifically, CB1 receptor 
activation could directly or indirectly, by modulating inhibitory and/or excitatory 
inputs to LC, increase the firing activity of NEergic neurons and consequently the 
release of NE in the forebrain. This indicates the existence of a functional interac-
tion between these two systems in the action of antidepressants [181, 193, 194]. 
However, in vitro studies have shown the capacity of cannabinoids to inhibit mono-
amine reuptake and metabolism, sharing some pharmacological properties with an-
tidepressants [195–198].

Increasing evidence links stress to depression and antidepressant action, and sug-
gests that stressors act by inducing a disruption in cellular mechanisms governing 
neuronal plasticity and disturbances in the hypothalamic-pituitary adrenal (HPA) 
axis [199, 200]. Hence, current and potential antidepressants exert neurotrophic 
activity, by increasing the hippocampal expression of factors such as cyclic adenos-
ine monophosphate-response element binding protein (CREB) and BDNF, and also 
affect HPA axis hyperactivity [201–205]. The endogenous cannabinoids AEA and 
2-AG [206] and the synthetic nonspecific cannabinoid CB1/CB2 receptor agonists 
HU-210 [137] or WIN55,212–2 [207, 208] stimulate neurogenesis, which is inhibit-
ed by pharmacological [151, 206] or genetic [209–212] CB1 receptor blockade. The 
enhanced AEA signaling also stimulates hippocampal cell proliferation, through a 
CB1 receptor-mediated mechanism [158, 213, 214]

Based on the recent detection of CB2 receptors in the brain [43], their potential 
mechanisms underlying emotional responses are under investigation. So far, it has 
been seen that pharmacological activation or genetic inactivation of CB2 recep-
tors enhanced or reduced hippocampal neuronal plasticity, respectively [215, 216]. 
Similarly, the CMS procedure did not alter BDNF expression in mice overexpress-
ing CB2 receptors [106], suggesting their potential protective role. On one hand the 
controversial in vivo data does not give us a coherent picture concerning the role of 
CB2 receptors in depression, on the other hand, however, the molecular data further 
strengthens the rationale for the development of selective CB2 receptor agonists as 
promising candidates to target neurogenesis, thus bypassing the undesired psycho-
active effects of central CB1 receptor activation.

Taken together the data presented herein suggests that facilitation of the en-
docannabinoid signaling through CB1 and/or CB2 receptors activation seems to 
mimic the effects of current antidepressants on hippocampal neuroplasticity. The 
HPA axis acts as a neuroendocrine bridge, regulating the stress response by con-
trolling the secretion of corticotrophin-releasing hormone, adrenocorticotropic and 
glucocorticoidhormones. Additionally, it is controlled by a negative feedback inhi-
bition loop which involves mineralocorticoid and glucocorticoid receptors [217]. 
Depressive disorders are also characterized by an inability of glucocorticoids to 
bind their receptors, which in turn can lead to HPA axis hyperactivity and increased 
levels of circulating glucocorticoids. Treatment with the current antidepressants re-
sults in reduction of glucocorticoid release, suggesting that the attenuation of HPA 
axis hyper-responsivity could be one of the long-term adaptations in response to 
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antidepressants that contributes to their therapeutic efficacy [218]. Several evidence 
highlights the role of the endocannabinoid signaling to regulate the HPA axis both 
during basal conditions and after stress exposure [133, 219] (see also Chap.  1). 
While CB1 receptor activation inhibits HPA axis activity, as a part of the HPA axis 
negative feedback inhibition loop, impairment in the CB1 receptor signaling in-
creases HPA axis activity under both basal conditions and following stress exposure 
[152, 220–222]. Collectively the data described above suggests that the antidepres-
sant-like effects of different classes of cannabinoids may in part be due to molecular 
mechanisms which resemble the ones triggered by antidepressants.

Future Perspective and Conclusive Remarks

In conclusion, the current evidence suggests a strong link between ECS and depres-
sive disorders. A deficiency in the endocannabinoid tone leads to a depressive-like 
phenotype in experimental animal models of depression (Table 5.3), which is in 
line with clinical findings where depressed patients have reduced levels of endog-
enous cannabinoids (Table 5.1). Hence, facilitation of the endocannabinoid signal-
ing could be the target for developing potential new antidepressants. Supporting 
this hypothesis is preclinical data which has shown that elevated endocannabinoid 
signaling is able to produce behavioural and biochemical effects as the conventional 
antidepressant treatment (Table 5.4), and that many antidepressants alter endoge-
nous cannabinoid tone (Table 5.2). However, whilst the direct activation of CB1 re-
ceptors is hampered by unwanted psychotropic effects, and the possibly safer direct 
modulation of CB2 receptors still lacks sufficient experimental evidence to justify 
its use, the indirect activation of cannabinoid receptors with agents that inhibit en-
docannabinoids deactivation has produced very promising results in experimental 
animal models of depression. Yet, this approach is not devoid of intrinsic problems, 
mostly due to the fact that endocannabinoid-deactivating proteins also recognize 
other non-endocannabinoid mediators as substrates which then activate different 
receptors—a property also shared to some extent by endocannabinoids like AEA 
and NADA. Thus, inhibition of enzymes like FAAH or of the putative endocan-
nabinoid transporter might lead to the activation of these alternative receptors. This 
complication and the possible compensatory action of co-occurring deactivation 
routes and enzymes for endocannabinoids [223] may render this approach not suf-
ficiently efficacious or safe. In view of these potential problems and of the fact 
that genetic studies have revealed a relationship between depression and polymor-
phisms of cannabinoid receptors and/or degradative enzymes, only time will tell if 
targeting the ECS may result in effective pharmacotherapies for major depression 
and other affective-related disorders.
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